The disc separation and the eigenvalue distribution of the Schur complement of nonstrictly diagonally dominant matrices

نویسندگان

  • Cheng-yi Zhang
  • Weiwei Wang
  • Shuanghua Luo
  • Jianxing Zhao
چکیده

The result on the Geršgorin disc separation from the origin for strictly diagonally dominant matrices and their Schur complements in (Liu and Zhang in SIAM J. Matrix Anal. Appl. 27(3):665-674, 2005) is extended to nonstrictly diagonally dominant matrices and their Schur complements, showing that under some conditions the separation of the Schur complement of a nonstrictly diagonally dominant matrix is greater than that of the original grand matrix. As an application, the eigenvalue distribution of the Schur complement is discussed for nonstrictly diagonally dominant matrices to derive some significant conclusions. Finally, some examples are provided to show the effectiveness of theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela the Eigenvalue Distribution of Schur Complements of Nonstrictly Diagonally Dominant Matrices and General H−matrices∗

The paper studies the eigenvalue distribution of Schur complements of some special matrices, including nonstrictly diagonally dominant matrices and general H−matrices. Zhang, Xu, and Li [Theorem 4.1, The eigenvalue distribution on Schur complements of H-matrices. Linear Algebra Appl., 422:250–264, 2007] gave a condition for an n×n diagonally dominant matrix A to have |JR+(A)| eigenvalues with p...

متن کامل

Ela on Generalized Schur Complement of Nonstrictly Diagonally Dominant Matrices and General H-matrices

This paper proposes the definition of the generalized Schur complement on nonstrictly diagonally dominant matrices and general H−matrices by using a particular generalized inverse, and then, establishes some significant results on heredity, nonsingularity and the eigenvalue distribution for these generalized Schur complements.

متن کامل

On generalized Schur complement of nonstrictly diagonally dominant matrices and general H-matrices

This paper proposes the definition of the generalized Schur complement on nonstrictly diagonally dominant matrices and general H−matrices by using a particular generalized inverse, and then, establishes some significant results on heredity, nonsingularity and the eigenvalue distribution for these generalized Schur complements.

متن کامل

Disc Separation of the Schur Complement of Diagonally Dominant Matrices and Determinantal Bounds

We consider the Geršgorin disc separation from the origin for (doubly) diagonally dominant matrices and their Schur complements, showing that the separation of the Schur complement of a (doubly) diagonally dominant matrix is greater than that of the original grand matrix. As application we discuss the localization of eigenvalues and present some upper and lower bounds for the determinant of dia...

متن کامل

An Improvement on Disc Separation of the Schur Complement and Bounds for Determinants of Diagonally Dominant Matrices

In this paper, we improve the disc separation of the Schur complement of strictly diagonally dominant matrices presented in Liu [SIAM. J. Matrix Anal. Appl., 27 (2005): 665-674]. As applications, we present some new bounds for determinants of original matrices and estimations for eigenvalues of Schur complement. By theoretical analysis, we improve the bounds of determinants established in Huang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017